
ANNUAL WATER OUALITY REPORT

Este reporte incluye informacion importante sobre el agua para tomar. Para asistencia en espanol, favor de llamar al telefono (956) 748-3633.

Quality First

Once again we are pleased to present our annual water quality report. As in years past, we are committed to delivering the best-quality drinking water possible. To that end, we remain vigilant in meeting the challenges of new regulations, source water protection, water conservation, and community outreach and education, while continuing to serve the needs of all of our water users. Thank you for allowing us the opportunity to serve you and your family.

We encourage you to share your thoughts with us on the information contained in this report. After all, wellinformed customers are our best allies.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. We meet the second Monday of each month, beginning at 6 p.m. at the East Rio Hondo Water Supply Corporation (ERHWSC) Main Office, 206 Industrial Parkway, Rio Hondo, Texas.

Source Water Assessment

The TCEQ (Texas Commission on Environmental Quality) has completed an assessment of your source water and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this consumer confidence report. For more information on source water assessments and protection efforts, contact TCEQ Region 15 office at (956) 425-6010.

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as *Cryptosporidium*, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other

steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* are available from the Safe Drinking Water Hotline at (800) 426-4791.

Cryptosporidium in Drinking Water

Cryptosporidium is a microbial parasite found in surface water throughout the U.S. Although filtration removes Cryptosporidium, the most commonly used filtration methods cannot guarantee 100 percent removal. Current test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immunocompromised people are at greater risk of developing life-threatening illness. We encourage immunocompromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water.

*In 2017 East Rio Hondo WSC began operating an Ultra-Violet Disinfection System at the Martha A. Simpson Water Treatment Plant on FM 510 that is capable of neutralizing *Cryptosporidium*. This system adds an extra layer of disinfection to the traditional treatment process to better safeguard our customers.

Level 2 Assessment Update

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year a Level 2 assessment was required to be completed for our water system. The Level 2 assessment was completed and in addition, we were required to take three corrective actions which were also completed.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www. epa.gov/safewater/lead.

System Information

WATER SOURCE	LENGTH OF TIME USED	EXPLANATION OF USE	CONTACT			
Harlingen WSC	365 Days	Supplement North/West of Distribution	HWWS (956) 440-6565			
Olmito WSC	365 Days	Supplement Southwest of Distribution	OWSC (956) 350-4099			
North Cameron Regional WSC	365 Days	Supplement North/West of Distribution	ERHWSC, (956) 748-3633			
East Rio Hondo WSC	365 Days	Wholesale Provider for Arroyo City	ERHWSC, (956) 748-3633			

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases, radioactive material; and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban storm-water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which may also come from gas stations, urban storm-water runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact our business

office. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Where Does My Water Come From?

epending on where you live in the East Rio Hondo Water Supply Corporation (ERHWSC) service area, you may receive processed Rio Grande River water from one of the 2 ERHWSC treatment facilities. Since 1982, ERHWSC has operated the 3.2 million-gallon-per-day (MGD) Nelson Road Water Treatment Plant south of FM 1561. In March of 2009, the 8 MGD Martha Ann Simpson Water Treatment Plant on FM 510 began operating. Raw Water (untreated) is pumped from the Rio Grande River and transferred to both plants by Cameron County Irrigation District #2 (CCID2). After treating the water, these two plants can deliver water to most locations in the ERHWSC service area. Members of the Arroyo City area receive water produced by ERHWSC through an interconnecting pipeline located on FM 1847. Members in the north and northwest areas of the system may receive water from the North Cameron Regional Water Supply Corporation (NCRWSC) Reverse Osmosis Groundwater Plant or from Harlingen Water Works System (HWWS) via an interconnect pipeline and pump station with ERHWSC. Members from the southwest area may receive water from Olmito Water Supply Corporation (OWSC) via an interconnecting pipeline. Analyses for all five water sources are included in this report. Rio Grande water for the Rio Grande Valley is stored in the both Amistad and Falcon reservoirs. These reservoirs fluctuate in level, depending on inflows from other states and from Mexico. Water quality varies depending on which area of the Rio Grande watershed the flow originates from.

Water Loss Audit

In the water loss audit submitted to the Texas Water Development Board during the year covered by this report, our system lost an estimated 7,434,898 gallons of water. If you have any questions about the water loss audit, please call Amanda Ramos at (956) 748-3633.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call Amanda Ramos at (956) 748-3633.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. The information in the data tables shows only those substances that were detected between January 1 and December 31, 2017. Remember that detecting a substance does not necessarily mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels. The State recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

We participated in the 3rd stage of the EPA's Unregulated Contaminant Monitoring Rule (UCMR3) program by performing additional tests on our drinking water. UCMR3 benefits the environment and public health by providing the EPA with data on the occurrence of contaminants suspected to be in drinking water, in order to determine if EPA needs to introduce new regulatory standards to improve drinking water quality. Contact us for more information on this program.

					ndo Water Supply rporation		Vater Treatment lant		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Arsenic (ppb)	2017	10	0	NA	NA	NA	NA	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Atrazine (ppb)	2017	3	3	0.18	0.18-0.18	NA	NA	No	Runoff from herbicide used on row crops
Barium (ppm)	2017	2	2	0.121	0.121–0.121	NA	NA	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Chloramines (ppm) (RAA)	2017	[4]	[4]	4.9	0.5-4.9	6.64	0.5-6.64	No	Water additive used to control microbes
Chlorine Dioxide (ppb)	2017	800	800	270	0.0-270	NA	NA	No	Water additive used to control microbes
Chlorine (ppm) (RAA)	2017	[4]	[4]	3.5	0.3–3.5	6.10	0.3-6.10	No	Water additive used to control microbes
Chlorite (ppm)	2017	1	0.8	0.85	0.02-0.85	NA	NA	No	By-product of drinking water disinfection
Combined Radium (pCi/L)	2015	5	0	1.5	1.5–1.5	NA	NA	No	Erosion of natural deposits
Cyanide (ppb)	2017	200	200	120	120–120	NA	NA	No	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories
Di(2-ethylhexyl) Phthalate (ppb)	2017	6	0	1.4	1.4–1.4	NA	NA	No	Discharge from rubber and chemical factories
Fluoride (ppm)	2017	4	4	0.46	0.46-0.46	NA	NA	No	Erosion of natural deposits; Water additive, which promotes strong teeth; Discharge from fertilizer and aluminum factories
Gross Beta Particle Activity (pCi/L)	2017	50	NA	NA	NA	NA	NA	No	Erosion of natural deposits
Haloacetic Acids [HAA] (ppb)	2017	60	NA	22.9	3–22.9	20.7	14.4–20.7	No	By-product of drinking water disinfection
Nitrate (ppm)	2017	10	10	0.2	0.09-0.2	0.3	0.3-0.3	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrite (ppm)	2014	1	1	0.01	0.01-0.01	NA	NA	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	2017	50	50	NA	NA	NA	NA	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
TTHMs [Total Trihalomethanes] (ppb)	2017	80	NA	43.7	<4.0-43.7	47.9	28.6–47.9	No	By-product of drinking water disinfection
Total Organic Carbon (ppm)	2017	TT	NA	4.94	2.85-4.94	NA	NA	No	Naturally present in the environment
Turbidity ¹ (NTU)	2017	TT	NA	0.31	0.09-0.31	NA	NA	No	Soil runoff
Turbidity (lowest monthly percent of samples meeting limit)	2017	TT = 95% of samples meet the limit	NA	100	NA	NA	NA	No	Soil runoff
Xylenes (ppm)	2017	10	10	NA	NA	NA	NA	No	Discharge from petroleum factories; Discharge from chemical factories

REGULATED SUBSTANCES												
					eron Regional Water ly Corporation		Water Supply rporation	Harlingen Water Works System				
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE	
Arsenic (ppb)	2017	10	0	3.1	3.1–3.1	NA	NA	0.0023	0.0023- 0.0023	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes	
Atrazine (ppb)	2017	3	3	NA	NA	NA	NA	NA	NA	No	Runoff from herbicide used on row crops	
Barium (ppm)	2017	2	2	0.0022	0.0022-0.0022	0.139	0.139-0.139	0.122	0.113-0.122	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	
Chloramines (ppm) (RAA)	2017	[4]	[4]	NA	NA	NA	NA	NA	NA	No	Water additive used to control microbes	
Chlorine Dioxide (ppb)	2017	800	800	NA	NA	NA	NA	NA	NA	No	Water additive used to control microbes	
Chlorine (ppm) (RAA)	2017	[4]	[4]	NA	NA	NA	NA	NA	NA	No	Water additive used to control microbes	
Chlorite (ppm)	2017	1	0.8	NA	NA	NA	NA	NA	NA	No	By-product of drinking water disinfection	
Combined Radium (pCi/L)	2015	5	0	NA	NA	NA	NA	NA	NA	No	Erosion of natural deposits	
Cyanide (ppb)	2017	200	200	70	70–70	0.07	0.07-0.07	120	120–120	No	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories	
Di(2-ethylhexyl) Phthalate (ppb)	2017	6	0	NA	NA	0.92	0.92–0.92	NA	NA	No	Discharge from rubber and chemical factories	
Fluoride (ppm)	2017	4	4	0.18	0.18-0.18	0.42	0.42-0.42	0.56	0.54–0.56	No	Erosion of natural deposits; Water additive, which promotes strong teeth; Discharge from fertilizer and aluminum factories	
Gross Beta Particle Activity (pCi/L)	2017	50	NA	NA	NA	NA	NA	7.0	5.2–7.0	No	Erosion of natural deposits	
Haloacetic Acids [HAA] (ppb)	2017	60	NA	NA	NA	NA	NA	NA	NA	No	By-product of drinking water disinfection	
Nitrate (ppm)	2017	10	10	0.13	0.13-0.13	0.19	0.19–0.19	0.18	0.12-0.18	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	
Nitrite (ppm)	2014	1	1	NA	NA	NA	NA	NA	NA	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	
Selenium (ppb)	2017	50	50	NA	NA	NA	NA	5.1	5.1–5.1	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	
TTHMs [Total Trihalomethanes] (ppb)	2017	80	NA	NA	NA	NA	NA	NA	NA	No	By-product of drinking water disinfection	
Total Organic Carbon (ppm)	2017	TT	NA	NA	NA	NA	NA	NA	NA	No	Naturally present in the environment	
Turbidity ¹ (NTU)	2017	TT	NA	0.28	0.06-0.28	0.29	0.17-0.29	0.38	0.12-0.38	No	Soil runoff	
Turbidity (lowest monthly percent of samples meeting limit)	2017	TT = 95% of samples meet the limit	NA	100	NA	100	NA	97.6	NA	No	Soil runoff	
Xylenes (ppm)	2017	10	10	NA	NA	0.0011	0.0011- 0.0011	NA	NA	No	Discharge from petroleum factories; Discharge from chemical factories	

Tap Water Samples 0	Collected for	Copper a	nd Lead	Analyses fro	m Sample Sites throu	ighout the Co	mmunities								
					East Rio Hondo Wa	ater Supply Co	orporation	Arroyo City Water Treatment Plant							
SUBSTANCE (UNIT OF MEASURE		EAR MPLED	AL	MCLG	AMOUNT DETECTED (90TH%TILE)		ABOVE AL/ AL SITES		DETECTED %TILE)	SITES ABOV		VIOLATION	TYPICAL SOU	RCE	
Copper (ppm)	2	.016	1.3	1.3	0.044		0/30	0.0)40 ²	0/10	2	No	Corrosion of of natural de		umbing systems; Erosion
Lead (ppb)	2	016	15	0	1.1		0/30	N	D^2	0/10	2	No	Corrosion of of natural de		umbing systems; Erosion
SECONDARY SUBSTANCES															
					Hondo Water Supply Corporation		Vater Treatment lant		eron Regional oly Corporation		later Supply oration		n Water Works System		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	MCLG	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIG			EXCEEDANCE	TYPICAL SOURCE
Aluminum (ppb)	2017	200	NA	0.142	0.142-0.142	NA	NA	NA	NA	32.4	32.4–32	2.4 NA	NA	No	Erosion of natural deposits; Residual from some surface water treatment processes
Chloride (ppm)	2017	300	NA	183.0	183.0–183.0	NA	NA	272	272–272	183	183–18	NA NA	NA	No	Runoff/leaching from natural deposits
Copper (ppm)	2017	1.0	NA	0.0331	0.0331- 0.0331	NA	NA	0.0247	0.0247- 0.0247	0.0704	0.0704 0.070		NA	No	Corrosion of household plumbing systems; Erosion of natural deposits
Iron (ppb)	2017	300	NA	82	82–82	NA	NA	NA	NA	19	19–19) NA	NA	No	Leaching from natural deposits; Industrial wastes
Manganese (ppb)	2017	50	NA	1.8	1.8–1.8	NA	NA	3.5	3.5–3.5	22.1	22.1–22	2.1 NA	NA	No	Leaching from natural deposits
pH (Units)	2017	>7.0	NA	8.73	7.00-8.73	8.04	6.47-8.04	8.9	6.43-8.9	7.3	7.3–7.	3 7.6	7.0–7.6	No	Naturally occurring
Sulfate (ppm)	2017	300	NA	347	347–347	NA	NA	126	126–126	432	432–43	32 323	323– 323	Yes	Runoff/leaching from natural deposits; Industrial wastes
Total Dissolved Solids [TDS] (ppm)	2016	1,000	NA	923	923–923	NA	NA	692²	692–692²	851²	851–85	1060	986– 1060	Yes	Runoff/leaching from natural deposits
Zinc (ppm)	2017	5	NA	0.0074	0.0074- 0.0074	NA	NA	0.0218	0.0218- 0.0218	0.0108	0.0108		NA	No	Runoff/leaching from natural deposits; Industrial wastes

UNREGULATED SUBSTANCES ³													
		East Rio Hondo Water Supply Corporation		Arroyo City Water Treatment Plant		North Cameron Regional Water Supply Corporation		Olmito Water Supply Corporation					
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE			
Bromodichloromethane (ppb)	2017	11.1	<1.0-11.1	11.5	8.1–11.5	NA	NA	18.4	18.4–18.4	By-product of drinking water disinfection			
Bromoform (ppb)	2017	12.3	<1.0–12.3	16.3	7.3–16.3	NA	NA	8.3	4.8-8.3	By-product of drinking water disinfection			
Chloroform (ppb)	2017	4.9	<1.0-4.9	4.2	3.2-4.2	NA	NA	9.5	4.7-9.5	By-product of drinking water disinfection			
Dibromochloromethane (ppb)	2017	15.7	<1.0–15.7	15.9	7.8–15.9	NA	NA	18.5	12.7–18.5	By-product of drinking water disinfection			
Nickel (ppm)	2017	0.0019	0.0019-0.0019	NA	NA	NA	NA	0.0023	0.0023-0.0023	Naturally present in the environment			
Sodium (ppm)	2017	178	178–178	NA	NA	199	199–199	157	157–157	Runoff/leaching from natural deposits			

OTH			

			londo Water orporation	Arroyo Ci Treatme			eron Regional y Corporation	Olmito Water Supply Corporation		Harlingen Water Works System		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT RANGE DETECTED LOW-HIGH		TYPICAL SOURCE
Alkalinity Bicarbonate (ppm)	2017	133	133–133	NA	NA	81	81–81	119	119–119	NA	NA	Corrosion of carbonate rock such as limestone
Alkalinity Total (ppm)	2017	109	109–109	NA	NA	66	66–66	98	98–98	NA	NA	Naturally present in the environment
Bromochloroacetic Acid (ppb)	2017	11.6	6.0–11.6	10.6	7.3–10.6	NA	NA	13	7.8–13	NA	NA	By-product of drinking water disinfection
Calcium (ppm)	2017	83.2	83.2-83.2	NA	NA	26.2	26.2–26.2	84.8	84.8–84.8	NA	NA	Naturally present in the environment
Dibromoacetic Acid (ppb)	2017	13.7	<1.0–13.7	11.5	6.8–11.5	NA	NA	9.9	6.3–9.9	NA	NA	By-product of drinking water disinfection
Dichloroacetic Acid (ppb)	2017	7.5	<1.0–7.5	7.2	6.2–7.2	NA	NA	11.1	6.4–11.1	NA	NA	By-product of drinking water disinfection
Hardness Total (As CACO3) (ppm)	2017	320	320–320	NA	NA	106	106–106	325	325–325	NA	NA	Naturally present in the environment
Hexadecanoic Acid (ppb)	2016	5.4	5.4-5.4	NA	NA	3.54	3.5-3.54	NA	NA	NA	NA	Naturally present in the environment
Magnesium (ppm)	2017	27.2	27.2–27.2	NA	NA	9.88	9.88–9.88	27.5	27.5–27.5	NA	NA	Naturally present in the environment
Octadecanoic Acid (ppb)	2016	3.7	3.7–3.7	NA	NA	NA	NA	NA	NA	NA	NA	Naturally present in the environment
Potassium (ppm)	2017	6.98	6.98–6.98	NA	NA	1.79	1.79–1.79	6.64	6.64–6.64	NA	NA	Naturally present in the environment
Trichloroacetic Acid (ppb)	2017	2.6	<1.0–2.6	2.0	1.4–2.0	NA	NA	6.1	2.0-6.1	NA	NA	By-product of drinking water disinfection

¹Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.

² Sampled in 2017.

³ Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

⁴ Sampled in 2014.

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

LRAA (Locational Running Annual Average): The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters. Amount Detected values for TTHMs and HAAs are reported as the highest LRAAs.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal):

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

RAA (Running Annual Average): The Maximum Contaminate Level is based on a Running Annual Average and not on a single sample point.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.