ANNUAL WATER QUALITY REPORT

WATER TESTING PERFORMED IN 2016

Este reporte incluye informacion importante sobre el agua para tomar. Para asistencia en espanol, favor de llamar al telefono (956) 748-3633.

We've Come a Long Way

nce again we are proud to present our annual water quality report covering the period between January 1 and December 31, 2016. In a matter of only a few decades, drinking water has become exponentially safer and more reliable than at any other point in human history. Our exceptional staff continues to work hard every day-at any hour-to deliver the highest quality drinking water without interruption. Although the challenges ahead are many, we feel that by relentlessly investing in customer outreach and education, new treatment technologies, system upgrades, and training, the payoff will be reliable, high-quality tap water delivered to you and your family.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. We meet the second Monday of each month beginning at 6 p.m. at the East Rio Hondo Water Supply Corporation (ERHWSC) Main Office, 206 Industrial Parkway, Rio Hondo, Texas.

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS

or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800) 426-4791.

Substances That Could Be in Water

o ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases, radioactive material; and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact our business office. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Where Does My Water Come From?

Depending on where you live in the East Rio Hondo Water Supply Corporation (ERHWSC) service area, you can receive processed Rio Grande River water from one of two ERHWSC treatment facilities. Since 1982, ERHWSC has operated the 3.2 million gallons per day (MGD) Nelson Road Treatment Plant south of FM 1561. In March of 2009, the 8.0 MGD Martha Ann Simpson Treatment Plant on FM 510 began operations. Water is pumped from the Rio Grande River water to all locations in our service area, depending upon system demands. Members of the Arroyo City area receive water produced by ERHWSC through an interconnecting pipeline located on FM 1847. Members west of Combes, north of Harlingen, and south of Rio Hondo areas may receive water form ERHWSC, North Cameron Regional Water Supply Corporation (NCRWSC), or Harlingen Water Works System (HWWS) via an interconnect pipeline with ERHWSC. Members from the southwest area may receive water from the ERHWSC or Olmito Water Supply Corporation (OWSC) via an interconnecting pipeline.

Analyses for all five water sources are included in this report. Rio Grande water for the Rio Grande Valley is stored in both the Amistad and Falcon reservoirs. These reservoirs fluctuate in levels, depending on the inflows from other states and from Mexico. Water quality varies depending on which area of the Rio Grande watershed the flow originates.

WATER SOURCE	LENGTH OF TIME USED	EXPLANATION OF USE	CONTACT		
Harlingen WSC	61 Days	Supplement North/West of Distribution	HWWS, Laboratory, (956) 440-6565		
Olmito WSC	318 Days	Supplement Southwest of Distribution	OWSC, Mr. Victor Treviño, (956) 350-4099		
North Cameron Regional WSC	290 Days	Supplement North/West of Distribution	ERHWSC, (956) 748-3633		
East Rio Hondo WSC	366 Days	Wholesale Provider for Arroyo City	WSC ERHWSC, (956) 748-3633		

Water Loss Audit

In the water loss audit submitted to the Texas Water Development Board during the year covered by this report, our system lost an estimated 160,096,385 gallons of water. If you have any questions about the water loss audit, please call the PWS phone number.

Source Water Assessment

The TCEQ (Texas Commission on Environmental Quality) has completed an assessment of your source water, and results indicate that some of our sources are susceptible to

certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this consumer confidence report. For more information on source water assessments and protection efforts, contact TCEQ Region 15 office at (956) 425-6010.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/ safewater/lead.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call Amanda Ramos at (956) 748-3633.

About Our Violation

VIOLATION TYPE	EXPLANATION	DATE AND LENGTH OF VIOLATION	STEPS TAKEN TO CORRECT VIOLATION	HEALTH EFFECTS
Treatment Technique	Cryptosporidium removal credit of 3.5 was less than required based on Bin 2 classification of 4.0 removal credit	From November 1st to November 30th, 2016	Installation of UV System	Inadequately treated or inadequately protected water may contain disease-causing organisms. These organisms can cause symptoms such as diarrhea, nausea, cramps, and associated headaches.

What's a Cross-connection?

Cross-connections that contaminate drinking water distribution lines are a major concern. A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air conditioning systems, fire sprinkler systems, irrigation systems) or water sources of questionable quality. Crossconnection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in the drinking water line drops due to fairly routine occurrences (main breaks, heavy water demand) causing contaminants to be sucked out from the equipment and into the drinking water line (backsiphonage).

Outside water taps and garden hoses tend to be the most common sources of cross-connection contamination at home. The garden hose creates a hazard when submerged in a swimming pool or when attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination.

Community water supplies are continuously jeopardized by cross-connections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed industrial, commercial, and institutional facilities in the service area to make sure that potential cross-connections are identified and eliminated or protected by a backflow preventer. We also inspect and test backflow preventers to make sure that they provide maximum protection.

For more information on backflow prevention, contact the Safe Drinking Water Hotline at (800) 426-4791.

Test Results

Our water is monitored for many different kinds of contaminants on a very strict sampling schedule. The information below represents only those substances that were detected; our goal is to keep all detects below their respective maximum allowed levels. The State recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year we were required to conduct one Level 1 assessment, which was completed. In addition, we were required to take no corrective actions.

REGULATED SUBSTANCES									
					ndo Water Supply rporation		Vater Treatment Plant		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Arsenic (ppb)	2016	10	NA	2.3	2.3–2.3	NA	NA	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium (ppm)	2016	2	2	0.162	0.162–0.162	NA	NA	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Chloramines (ppm)	2016	[4]	[4]	5.0	0.5–5.0	6.5	0.5–6.5	No	Water additive used to control microbes
Chlorine Dioxide (ppb)	2016	[800]	[800]	130	0.0-130	NA	NA	No	Water additive used to control microbes
Chlorine (ppm)	2016	[4]	[4]	2.7	0.2–2.7	3.7	0.2–3.7	No	Water additive used to control microbes
Chlorite (ppm)	2016	1	0.8	0.93	0.17-0.93	NA	NA	No	By-product of drinking water disinfection
Combined Radium (pCi/L)	2015	5	0	1.5	1.5–1.5	NA	NA	No	Erosion of natural deposits
Cyanide (ppb)	2016	200	200	60.0	60.0–60.0	NA	NA	No	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories
Fluoride (ppm)	2016	4	4	0.44	0.44–0.44	NA	NA	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Haloacetic Acids [HAA] (ppb)	2016	60	NA	20.2	1.1-20.2	21.0	14.8–21.0	No	By-product of drinking water disinfection
Nitrate (ppm)	2016	10	10	0.2	0.09–0.2	0.7	0.7–0.7	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrate-Nitrite (ppm)	2014	10	10	0.17	0.04–0.17	NA	NA	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrite (ppm)	2014	1	1	0.01	0.01-0.01	NA	NA	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	2016	50	50	4.2	4.2–4.2	NA	NA	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
TTHMs [Total Trihalomethanes] (ppb)	2016	80	NA	50.5	4.0–50.5	60.5	31.1-60.5	No	By-product of drinking water disinfection
Total Organic Carbon (ppm)	2016	TT	NA	4.07	2.94-4.07	NA	NA	No	Naturally present in the environment
Turbidity ³ (NTU)	2016	TT	NA	0.3	0.08-0.3	NA	NA	No	Soil runoff
Turbidity (Lowest monthly percent of samples meeting limit)	2016	TT = 95% of samples meet the limit	NA	100	NA	NA	NA	No	Soil runoff

					on Regional Water Corporation		Vater Supply poration		Water Works /stem		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Arsenic (ppb)	2016	10	NA	2.41	2.4–2.41	NA	NA	2.3	2.2–2.3	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium (ppm)	2016	2	2	0.00211	0.0021- 0.0021 ¹	0.191	0.191– 0.191	0.107	0.0945– 0.107	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Chloramines (ppm)	2016	[4]	[4]	NA	NA	NA	NA	NA	NA	No	Water additive used to control microbes
Chlorine Dioxide (ppb)	2016	[800]	[800]	NA	NA	NA	NA	NA	NA	No	Water additive used to control microbes
Chlorine (ppm)	2016	[4]	[4]	NA	NA	NA	NA	NA	NA	No	Water additive used to control microbes
Chlorite (ppm)	2016	1	0.8	NA	NA	NA	NA	NA	NA	No	By-product of drinking water disinfection
Combined Radium (pCi/L)	2015	5	0	NA	NA	NA	NA	NA	NA	No	Erosion of natural deposits
Cyanide (ppb)	2016	200	200	801	80–80 ¹	NA	NA	NA	NA	No	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories
Fluoride (ppm)	2016	4	4	0.161	0.16–0.161	0.46	0.46–0.46	0.61	0.51–0.61	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Haloacetic Acids [HAA] (ppb)	2016	60	NA	NA	NA	NA	NA	NA	NA	No	By-product of drinking water disinfection
Nitrate (ppm)	2016	10	10	0.12	0.12-0.12	0.18	0.18–0.18	0.23	0.08-0.23	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrate-Nitrite (ppm)	2014	10	10	0.09 ²	0.09–0.09 ²	NA	NA	NA	NA	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrite (ppm)	2014	1	1	NA	NA	NA	NA	NA	NA	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	2016	50	50	NA	NA	4.5	4.5–4.5	4.5	3.3–4.5	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
TTHMs [Total Trihalomethanes] (ppb)	2016	80	NA	NA	NA	NA	NA	NA	NA	No	By-product of drinking water disinfection
Total Organic Carbon (ppm)	2016	ΤT	NA	NA	NA	NA	NA	NA	NA	No	Naturally present in the environment
Turbidity ³ (NTU)	2016	TT	NA	0.20	0.07-0.20	0.31	0.18-0.31	0.48	0.17-0.48	No	Soil runoff
Turbidity (Lowest monthly percent of samples meeting limit)	2016	TT = 95% of samples meet the limit	NA	100	NA	100	NA	100	NA	No	Soil runoff
Tap water samples were colled	cted for lead	and copper analyse	s from samp	le sites throu	ghout the commun	iity					
East Rio Hondo Water Supply Corporation Arroyo City Water Treatment Plant											

SUBSTANCE					SITES ABOVE		SITES ABOVE				
(UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH%TILE)	AL/TOTAL SITES	AMOUNT DETECTED (90TH%TILE)	AL/TOTAL SITES	VIOLATION	TYPICAL SOURCE		
Copper (ppm)	2016	1.3	1.3	0.044	0/30	0.0441	0/10 ¹	No	Corrosion of household plumbing systems; Erosion of natural deposits		
Lead (ppb)	2016	15	0	1.1	0/30	Less than detection limit ¹	0/10 ¹	No	Corrosion of household plumbing systems; Erosion of natural deposits		

SECONDARY S	SECONDARY SUBSTANCES														
	East Rio Hond Supply Corp					ity Water nt Plant	North Cameron Regional Water Supply Corporation		Olmito Water Supply Corporation		Harlingen Water Works System				
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SCL	MCLG	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	EXCEEDANCE	TYPICAL SOURCE
Aluminum (ppb)	2016	200	NA	0.105	0.105– 0.105	NA	NA	NA	NA	30.7	30.7–30.7	NA	NA	No	Erosion of natural deposits; Residual from some surface water treatment processes
Chloride (ppm)	2016	300	NA	254.0	254.0– 254.0	NA	NA	2641	264–2641	237	237–237	NA	NA	No	Runoff/leaching from natural deposits
Copper (ppm)	2015	1.0	NA	0.054	0.054– 0.054	0.0641	0.031– 0.031 ¹	NA	NA	0.06324	0.0632– 0.0632 ⁴	NA	NA	No	Corrosion of household plumbing systems; Erosion of natural deposits
Iron (ppb)	2016	300	NA	28.0	28.0– 28.0	NA	NA	10 ¹	10–10 ¹	15	15–15	NA	NA	No	Leaching from natural deposits; Industrial wastes
Manganese (ppb)	2016	50	NA	1	1–1	NA	NA	4.9 ¹	4.9–4.9 ¹	18.3	18.3–18.3	NA	NA	No	Leaching from natural deposits
pH (Units)	2016	>7.0	NA	7.9	7.9–7.9	NA	NA	NA	NA	7.3	7.3–7.3	7.1	7.0–7.1	No	Naturally occurring
Sulfate (ppm)	2016	300	NA	433	433–433	NA	NA	1361	136–136 ¹	412	412–412	387	359–387	Yes	Runoff/leaching from natural deposits; Industrial wastes
Total Dissolved Solids [TDS] (ppm)	2016	1,000	NA	1,150	1,150– 1,150	NA	NA	674 ¹	674–674 ¹	1,080	1,080– 1,080	1,060	986– 1,060	Yes	Runoff/leaching from natural deposits
Zinc (ppm)	2016	5	NA	NA	NA	NA	NA	NA	NA	0.0310	0.0310– 0.0310	NA	NA	No	Runoff/leaching from natural deposits; Industrial wastes

UNREGULATED AND OTHER SUBSTANCES⁵

	East Rio Hondo Water Supply Corporation			Arroyo City Water Treatment Plant		North Cameron Regional Water Supply Corporation		ater Supply oration		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE
Alkalinity Bicarbonate (ppm)	2016	142	142–142	NA	NA	67 ¹	67–67 ¹	131	131–131	Corrosion of carbonate rock such as limestone
Alkalinity Total (ppm)	2016	116	98–116	NA	NA	55 ¹	55–55 ¹	107	107-107	Naturally present in the environment
Bromochloroacetic Acid (ppb)	2016	9.6	1.0–9.6	11.1	6.7–11.1	NA	NA	NA	NA	By-product of drinking water disinfection
Bromodichloromethane (ppb)	2016	10.2	1.0-10.2	10.7	8.6–10.7	NA	NA	NA	NA	By-product of drinking water disinfection
Bromoform (ppb)	2016	20.3	1.0-20.3	27.6	8.8–27.6	NA	NA	NA	NA	By-product of drinking water disinfection
Calcium (ppm)	2016	98.1	98.1–98.1	NA	NA	25.4 ¹	25.4–25.4 ¹	97.2	97.2–97.2	Naturally present in the environment
Chloroform (ppb)	2016	4.4	1.0-4.4	4.4	2.5-4.4	NA	NA	NA	NA	By-product of drinking water disinfection
Dibromoacetic Acid (ppb)	2016	10.8	1.0-10.8	11.6	8.0–11.6	NA	NA	NA	NA	By-product of drinking water disinfection
Dibromochloromethane (ppb)	2016	17.8	1.0–17.8	21.0	9.6–21.0	NA	NA	NA	NA	By-product of drinking water disinfection
Dichloroacetic Acid (ppb)	2016	6.8	1.0-6.8	7.7	5.1–7.7	NA	NA	NA	NA	By-product of drinking water disinfection
Hardness Calcium Magnesium (ppm)	2012	394	106–394	NA	NA	NA	NA	NA	NA	Naturally present in the environment
Hardness Total [as CACO3] (ppm)	2016	385	385–385	NA	NA	106 ¹	106–1061	394	394–394	Naturally present in the environment
Hexadecanoic Acid (ppb)	2016	5.4	5.4–5.4	NA	NA	3.51	3.5–3.5 ¹	NA	NA	Naturally present in the environment
Magnesium (ppm)	2016	34.1	34.1-34.1	NA	NA	10.41	10.4–10.41	36.7	36.7–36.7	Naturally present in the environment

UNREGULATED AND OTH	UNREGULATED AND OTHER SUBSTANCES ⁵													
			ondo Water Supply prporation	Arroyo City Water Treatment Plant			on Regional Water Corporation	Olmito Water	Supply Corporation					
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE				
Octadecanoic Acid (ppb)	2016	3.7	3.7–3.7	NA	NA	NA	NA	NA	NA	Naturally found in the environment				
Nickel (ppm)	2016	0.0025	0.0025-0.0025	NA	NA	NA	NA	0.0037	0.0037-0.0037	Naturally present in the environment				
Potassium (ppm)	2016	7.41	7.41–7.41	NA	NA	1.631	1.63–1.631	7.53	7.53–7.53	Naturally present in the environment				
Sodium (ppm)	2016	223	223–223	NA	NA	191 ¹	191–191 ¹	197	197–197	Runoff/leaching from natural deposits				
Trichloroacetic Acid (ppb)	2016	1.9	1.0–1.9	1.9	1.3–1.9	NA	NA	NA	NA	By-product of drinking water disinfection				

¹Sampled in 2014.

² Sampled in 2013.

⁴ Sampled in 2016.

⁵ Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

³Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

SCL (Secondary Constituent Level): SCLs are established to regulate the aesthetics of drinking water like appearance, taste and odor.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.