ANNUAL WATER OUALITY EVALUATED STATES STATES

WATER TESTING PERFORMED IN 2015

Presented By East Rio Hondo Water Supply Corporation

Este reporte incluye informacion importante sobre el agua para tomar. Para asistencia en espanol, favor de llamar al telefono (956) 748-3633.

Meeting the Challenge

Once again we are proud to present our annual drinking water report, covering all drinking water testing performed between January 1 and December 31, 2015. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to your homes and businesses. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all of our water users.

For more information about this report, or for any questions relating to your drinking water, please call Amanda Ramos at (956) 748-3633.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. We meet the second Monday of each month beginning at 6 p.m. at the East Rio Hondo Water Supply Corporation (ERHWSC) Main Office, 206 Industrial Parkway, Rio Hondo, Texas.

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders

can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800) 426-4791.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on the taste, odor, or color of drinking water, please contact our business office. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Water Conservation

You can play a role in conserving water and saving yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips:

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you save more than 30,000 gallons a year.
- Use your water meter to detect hidden leaks. Simply turn off all taps and water using appliances. Then check the meter after 15 minutes. If it moved, you have a leak.

Source Water Assessment

The TCEQ (Texas Commission on Environmental Quality) has completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts, contact the TCEQ Region 15 office at (956) 425-6010.

UCMR3 Sampling

Performing the participated in the 3rd stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR3) program by performing additional tests on our drinking water. UCMR3 benefits the environment and public health by providing the EPA with data on the occurrence of contaminants suspected to be in drinking water, in order to determine if the EPA needs to introduce new regulatory standards to improve drinking water quality. Contact us for more information on this program.

What's Your Water Footprint?

You may have some understanding about your carbon footprint, but how much do you know about your water footprint? The water footprint of an individual, community, or business is defined as the total volume of freshwater that is used to produce the goods and services that are consumed by the individual or community or produced by the business. For example, 11 gallons of water are needed to irrigate and wash the fruit in one half-gallon container of orange juice. Thirty-seven gallons of water are used to grow, produce, package, and ship the beans in that morning cup of coffee. Two hundred and sixty-four gallons of water are required to produce one quart of milk, and 4,200 gallons of water are required to produce two pounds of beef. According to the U.S. EPA, the average American uses over 180 gallons of water daily. In fact, in the developed world, one flush of a toilet uses as much water as the average person in the developing world allocates for an entire day's cooking, washing, cleaning, and drinking. The annual American per capita water footprint is about 8,000 cubic feet;

twice the global per capita average. With water use increasing six-fold in the past century, our demands for freshwater are rapidly outstripping what the planet can replenish. To check out your own water footprint, go to goo.gl/QMoIXT.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Where Does My Water Come From?

Depending on where you live in the East Rio Hondo Water Supply Corporation (ERHWSC) service area, you receive processed Rio Grande River water from one of two treatment facilities. Since 1982, ERHWSC has operated the 3.2 million gallon per day (MGD) Nelson Road Treatment Plant south of FM 1561. In March of 2009, the 8.0 MGD Martha Ann Simpson Treatment Plant came into operation. Water is pumped from the Rio Grande River and transferred to both plants by Cameron County Irrigation District Number Two (CCID2). These two plants can deliver water to all locations in our service area, depending upon system demands. Members of the Arroyo City area receive water produced from ERHWSC through an interconnect pipeline located on FM 1847. Members of the west of Combes and North Harlingen areas may receive water from ERHWSC, North Cameron Regional Water Supply Corporation, North Alamo W.S.C, or Harlingen Waterworks System (HWWS) via an interconnect pipeline with ERHWSC. Analyses for all five water sources are included in this report. Rio Grande water for the Rio Grande Valley is stored in the Amistad and Falcon reservoirs. These reservoirs fluctuate in level, depending on inflows from other states and from Mexico. Water quality varies depending in which area of the Rio Grande watershed the inflow originates.

SOURCE OF THE WATER	LENGTH OF TIME USED	EXPLANATION OF USE	CONTACT
Harlingen Water Works System	195 Days	Supplement North West of Distribution	Laboratory (956) 440-6565 (HWWS)
North Alamo Water Supply Corporation	174 Days	Supplement North West of Distribution	NAWSC (956) 383-1618 (NAWSC)
Olmito Water Supply Corporation	2 Days	Supplement South of Distribution	Mr. Victor Trevino (956) 350-4099 (OWSC)

Sampling Results

During the past year, we have taken hundreds of water samples in order to determine the presence of any radioactive, biological, inorganic, volatile organic, or synthetic organic organic organic. The tables below show only those contaminants that were detected in the water. The state requires us to monitor for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

REGULATED SUBSTANCES

				Harlingen \ Sys	Nater Works stem	Arroyo City V	Nater Treatment Plant	North Cameron Regional Water Supply Corporation			
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Antimony (ppb)	2011	6	6	NA	NA	0.529	0.529– 0.529	NA	NA	No	Discharge from petroleum refineries; Fire retardants; Ceramics; Electronics; Solder
Arsenic (ppb)	2015	10	NA	2.6	2.4–2.6	2.06 ¹	2.06–2.061	2.4	2.4–2.4	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Barium (ppm)	2015	2	2	0.13	0.093– 0.13	0.125 ¹	0.125– 0.125 ¹	0.0021 ²	$0.0021 - 0.0021^2$	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Chloramines (ppm)	2015	[4]	[4]	NA	NA	3.1	0.5–6.7	NA	NA	No	Water additive used to control microbes
Chlorine (ppm)	2015	[4]	[4]	NA	NA	2.27	0.4-4.3	NA	NA	No	Water additive used to control microbes
Chlorine Dioxide (ppb)	2015	[800]	[800]	NA	NA	NA	NA	NA	NA	No	Water additive used to control microbes
Chlorite (ppm)	2014	1	0.8	NA	NA	NA	NA	NA	NA	No	By-product of drinking water disinfection
Chromium (ppb)	2011	100	100	NA	NA	1.9	1.9–1.9	NA	NA	No	Discharge from steel and pulp mills; Erosion of natural deposits
Combined Radium (pCi/L)	2015	5	0	NA	NA	NA	NA	NA	NA	No	Erosion of natural deposits
Cyanide (ppb)	2014	200	200	NA	NA	NA	NA	80	80-80	No	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories
Di(2-ethylhexyl) Adipate (ppb)	2011	400	400	NA	NA	2.67	2.67–2.67	NA	NA	No	Discharge from chemical factories
Fluoride (ppm)	2015	4	4	0.52	0.35– 0.52	0.58 ¹	0.58–0.58 ¹	0.16 ²	0.16–0.16 ²	No	Erosion of natural deposits; Water additive that promotes strong teeth; Discharge from fertilizer and aluminum factories
Gross Beta Particle Activity ⁴ (pCi/L)	2015	50	50	NA	NA	NA	NA	NA	NA	No	Naturally present in the environment
Haloacetic Acids [HAAs]–Stage 1 (ppb)	2015	60	NA	NA	NA	NA	NA	NA	NA	No	By-product of drinking water disinfection
Haloacetic Acids [HAAs]–Stage 2 (ppb)	2015	60	NA	NA	NA	26.7	19.5–26.7	NA	NA	No	By-product of drinking water disinfection
Nickel (ppb)	2011	100	100	NA	NA	3.15	3.15-3.15	NA	NA	No	Naturally present in the environment
Nitrate (ppm)	2015	10	10	0.1	0.08-0.1	0.36	0.36–0.36	0.04 ²	0.04–0.04 ²	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrate-Nitrite (ppm)	2014	10	10	NA	NA	NA	NA	NA	NA	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrite (ppm)	2014	1	1	NA	NA	NA	NA	NA	NA	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	2015	50	50	5	5–6	7.31 ¹	7.31–7.31 ¹	NA	NA	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
Thallium Total (ppb)	2011	2	0.5	NA	NA	0.195	0.195– 0.195	NA	NA	No	Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories

REGULATED SUBSTANCES																
						Harlingen V Sys	later Works tem	Arroyo) City Wa Plai	ter Treatment nt	Nort Wate	th Cameron er Supply Co	Regional rporation			
SUBSTANCE (UNIT OF MEASURE)		YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOL DETEC	UNT CTED	RANGE LOW-HIGH	AMOU DETEC	UNT I	RANGE DW-HIGH	VIOLATION	TYPICAL SOURCE	
TTHMs [Total Trihalome Stage 1 (ppb)	thanes]–	2015	80		NA	NA	NA	N	A	NA	N.	A	NA	No	By-product of drinking water disinfection	
TTHMs [Total Trihalome Stage 2 (ppb)	thanes]–	2015	80		NA	NA	NA	61.	.8	33.8–33.8	N.	A	NA	No	By-product of drinking water disinfection	
Total Organic Carbon (pp	m)	2015	TT		NA	NA	NA	N	A	NA	N.	A	NA	No	Naturally present in the environment	
Turbidity ⁶ (NTU)		2015	TT		NA	0.3	0.18-0.3	N	A	NA	0.2	.8 ² 0.0	$8-0.28^{2}$	No	Soil runoff	
Turbidity (Lowest monthly of samples meeting limit)	y percent	2015	TT = 95% o < or = 0.3	f samples NTU	NA	100	NA	N	A	NA	10	0 ²	NA ²	No	Soil runoff	
REGULATED SUBSTAN	ICES															
				Olmito \ Cor	Vater Supply poration	North A	lamo Water Corporation	Supply	East Suj	Rio Hondo Wa oply Corporatio	iter in					
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOU DETECT	NT RAI	NGE -HIGH		IT RANG ED LOW-H	GE IIGH	VIOLATION	TYPICAL	SOURCE		
Antimony (ppb)	2011	6	6	NA	NA	NA	N	JA	NA	NA	A	No	Discha Electro	rge from ponics; Solde	etroleum refineries; Fire retardants; Ceramics; r	
Arsenic (ppb)	2015	10	NA	NA	NA	NA	L N	JA	2.4	2.4-2	2.4	No	Erosio glass at	n of natural nd electron	deposits; Runoff from orchards; Runoff from ics production wastes	
Barium (ppm)	2015	2	2	0.188	0.188- 0.188	- NA	N	JA	0.150	5 0.15 0.15	i6– 56	No	Discha Erosio	ischarge of drilling wastes; Discharge from metal refineries; rosion of natural deposits		
Chloramines (ppm)	2015	[4]	[4]	NA	NA	NA	N	JA	2.95	0.5-	6.0	No	Water	additive us	ed to control microbes	
Chlorine (ppm)	2015	[4]	[4]	NA	NA	NA	N	JA	1.52	0.2-	3.9	No	Water	additive us	ed to control microbes	
Chlorine Dioxide (ppb)	2015	[800]	[800]	NA	NA	NA	N	JA	0.1	0.0-	-19	No	Water	additive us	ed to control microbes	
Chlorite (ppm)	2014	1	0.8	0.0108	0.0108 0.0108	- NA	N	JA	0.88	³ 0.02–0	0.88 ³	No	By-pro	duct of dri	nking water disinfection	
Chromium (ppb)	2011	100	100	NA	NA	NA	N	JA	NA	NA	A	No	Discha	rge from st	eel and pulp mills; Erosion of natural deposits	
Combined Radium (pCi/L)	2015	5	0	NA	NA	NA	N	JA	1.5	1.5–	1.5	No	Erosio	n of natura	deposits	
Cyanide (ppb)	2014	200	200	110 ³	110-11	0 ³ NA	N	JA	100 ³	100-1	100 ³	No	Discha fertiliz	rge from st er factories	eel/metal factories; Discharge from plastic and	
Di(2-ethylhexyl) Adipate (ppb)	2011	400	400	NA	NA	NA	N	JA	NA	NA	A	No	Discha	rge from cl	nemical factories	
Fluoride (ppm)	2015	4	4	0.4	0.38–0.	.4 NA	N	JA	0.42	0.42-	0.42	No	Erosio: strong	n of natura teeth; Disc	deposits; Water additive that promotes harge from fertilizer and aluminum factories	
Gross Beta Particle Activity ⁴ (pCi/L)	2015	50	50	NA	NA	NA	N	JA	8.7	8.7–	8.7	No	Natura	lly present	in the environment	
Haloacetic Acids [HAAs]–Stage 1 (ppb)	2015	60	NA	28.9	15.9–28	.9 NA	N	JA	NA	NA	A	No	By-pro	duct of dri	nking water disinfection	
Haloacetic Acids [HAAs]–Stage 2 (ppb)	2015	60	NA	NA	NA	NA	N	JA	31.3	4.0-3	31.3	No	By-pro	duct of dri	nking water disinfection	
Nickel (ppb)	2011	100	100	NA	NA	NA	N	JA	2.5 ³	2.5-2	2.5^{3}	No	Natura	lly present	in the environment	

REGULATED SUBSTANCES													
				Olmito V Corj	Vater Supply poration	North Alamo Corp	o Water Supply oration	East Rio Supply	Hondo Water Corporation				
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE		
Nitrate (ppm)	2015	10	10	0.28	0.28-0.28	NA	NA	0.19	0.19–0.19	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits		
Nitrate-Nitrite (ppm)	2014	10	10	NA	NA	NA	NA	0.17	0.04–0.17	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits		
Nitrite (ppm)	2014	1	1	NA	NA	NA	NA	0.01	0.01–0.01	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits		
Selenium (ppb)	2015	50	50	3.3	3.3–3.3	NA	NA	4.9	4.9–4.9	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines		
Thallium Total (ppb)	2011	2	0.5	NA	NA	NA	NA	NA	NA	No	Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories		
TTHMs [Total Trihalomethanes]– Stage 1 (ppb)	2015	80	NA	70.8	41.6–70.8	NA	NA	NA	NA	No	By-product of drinking water disinfection		
TTHMs [Total Trihalomethanes]– Stage 2 (ppb)	2015	80	NA	NA	NA	NA	NA	121.05	14-121.05	No	By-product of drinking water disinfection		
Total Organic Carbon (ppm)	2015	TT	NA	NA	NA	NA	NA	4.27	3.02-4.27	No	Naturally present in the environment		
Turbidity ⁶ (NTU)	2015	TT	NA	0.35	0.25-0.35	0.29	0.09–0.29	0.29	0.12-0.29	No	Soil runoff		
Turbidity (Lowest monthly percent of samples meeting limit)	2015	TT = 95% of samples < or = 0.3 NTU	NA	100	NA	100	NA	100	NA	No	Soil runoff		
Tap water samples were collected for lead and	copper ana	lyses from sample a	sites throug	jhout the co	mmunity								

				Arroyo City Water Treatm	ent Plant	Olmito Wa Corpo	ter Supply ration	East Rio Hondo Corpo	o Water Supply ration		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL/ TOTAL SITES	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL/ TOTAL SITES	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2014	1.3	1.3	0.044	0/10	0.0785 ⁷	1/207	0.01047	0/307	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)	2014	15	0	Less than detection limit	0/10	1.397	0/207	5.037	0/307	No	Corrosion of household plumbing systems; Erosion of natural deposits

SECONDARY SUBSTANCES

				Harlingen W Syst	later Works tem	Arroyo City Wat	er Treatment Plant	North Came Water Suppl	ron Regional y Corporation	Regional East Rio Hondo Water Supply rporation Corporation			
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	MCLG	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	EXCEEDANCE	TYPICAL SOURCE
Aluminum (ppb)	2011	200	NA	NA	NA	127	127–127	NA	NA	76.6 ³	76.6–76.6 ³	No	Erosion of natural deposits; Residual from some surface water treatment processes
Chloride (ppm)	2011	300	NA	NA	NA	238	238–238	264 ²	264–264 ²	217 ³	217–217 ³	No	Runoff/leaching from natural deposits
Copper (ppm)	2015	1.0	NA	NA	NA	NA	NA	NA	NA	0.054	0.054–0.054	No	Corrosion of household plumbing systems; Erosion of natural deposits
Iron (ppb)	2014	300	NA	NA	NA	NA	NA	10	10-10	35 ³	35–35 ³	No	Leaching from natural deposits; Industrial wastes

SECONDARY SUB	STANCES																
				Harlingen V	Vater Works	Armonia City Mat	er Treetment Dient	North Came	ron Regional	East Rio H	ondo Water Su	pply					
				აკა		Arruyu Gity wat					Corporation						
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	MCLG	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE	H EXCE	EEDANCE	TYPICAL SOURCE			
Manganese (ppb)	2014	50	NA	60 ³	40-60 ³	10.2 ¹	10.2–10.2 ¹	4.9	4.9–4.9	1.2^{3}	1.2-1.2	3	No	Leaching from natural deposits			
pH (Units)	2015	6.5–8.5	NA	7.1	7.0–7.0	7.2 ¹	$7.2-7.2^{1}$	8.5 ¹	8.5-8.5 ¹	7.9 ¹	7.9–7.9	¹	No	Naturally occurring			
Sulfate (ppm)	2015	300	NA	380	376–380	257 ¹	257–257 ¹	136²	136–136 ²	361	361–36	1	Yes ⁸	Runoff/leaching from natural deposits; Industrial wastes			
Total Dissolved Solids [TDS] (ppm)	2015	500	NA	1,060	1,007– 1,060	773 ¹	773–773 ¹	674²	674–6742	969	969–96	9	Yes ⁹	Runoff/leaching from natural deposits			
Zinc (ppm)	2011	5	NA	NA	NA	0.00000506	0.00000506– 0.00000506	NA	NA	0.0075 ³	0.0075- 0.0075	3	No	Runoff/leaching from natural deposits; Industrial wastes			
UNREGULATED SU	JBSTANC	ES 11															
				Arroyo	City Water Tre	atment Plant	North Cameror Supply C	n Regional Wat Corporation	er	East Rio Hone Corp	do Water Suppl poration	у					
SUBSTANCE (UNIT OF MEASURE)		Y SAI	'ear Mpled	AMOU DETEC	INT TED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIG	Е 14 С	AMOUNT DETECTED	RANG	іЕ GH ТҮ	YPICAL SOL	JRCE			
Bromochloromethan	e (ppb)	2	2015	13.	1	9.6–13.1	NA	NA		20.7	2.3–2	0.7 B	By-product	of drinking water disinfection			
Bromoform (ppb)		2	2015	26.	6	8.1–26.6	NA	NA		54.4	5.2-5	4.4 B	By-product	of drinking water disinfection			
Chloroform (ppb)		2	2015	5.8	3	2.9–5.8	NA	NA		5.4	1.0-5	.4 B	By-product	of drinking water disinfection			
Chloromethane (ppb)	2	2011	0.9)	0.9–0.9	NA	NA		NA	NA	. В	By-product	of drinking water disinfection			
Dibromochlorometh	ane (ppb)	2	2015	22.	7	9.8–22.7	NA	NA		40.9	5.3–4	0.9 B	By-product	of drinking water disinfection			
Sodium (ppm)		2	2014	130	6	136–136 ¹	191	191–19	91	188 ³	188–1	88 ³ R	Runoff/leac	hing from natural deposits			
OTHER SUBSTANC	CES																
					Arroyo City \ F	Vater Treatment Plant	North Cameron Supply C	Regional Wate	er East I	Rio Hondo Wa Corporatio	ter Supply n						
SUBSTANCE (UNIT OF MEASURE)			S	YEAR AMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOU	JNT CTED L	RANGE OW-HIGH	TYPICAL SO	OURCE				
Alkalinity (ppm)				2011	63	63–63	55 ²	55-55 ²	N	A	NA	Naturally	present in	the environment			
Alkalinity Bicarbona	te (ppm)			2011	63	63–63	NA	NA	12	0 ³ 1	$20-120^{3}$	Corrosion	n of carbor	nate rock such as limestone			

								, I
Alkalinity Bicarbonate (ppm)	2011	63	63–63	NA	NA	120 ³	120-120 ³	Corrosion of carbonate rock such as limestone
Bromochloroacetic Acid (ppb)	2015	12.3	12.3–12.3	NA	NA	13.4	1.0–13.4	By-product of drinking water disinfection
Calcium (ppm)	2011	74.3	74.3–74.3	25.4 ²	25.4–25.4 ²	85.8 ³	85.8–85.8 ³	Naturally present in the environment
Dibromoacetic Acid (ppb)	2015	18	9.7–18	NA	NA	20.3	1.0-20.3	By-product of drinking water disinfection
Dichloroacetic Acid (ppb)	2015	8.6	6.8–8.6	NA	NA	9.3	1–9.3	By-product of drinking water disinfection
Hardness [Calcium & Magnesium] (ppm)	2011	284	284–284	NA	NA	394 ¹⁰	106–394 ¹⁰	Naturally present in the environment
Hardness, Total [as CACO3] (ppm)	2014	NA	NA	106	106–106	346 ³	346-346 ³	Naturally present in the environment
Hardness, Total (ppm)	2009	259	259–259	NA	NA	NA	NA	Naturally present in the environment
Heptanal (ppm)	2005	1.23	1.23–1.23	NA	NA	NA	NA	Runoff/leaching from natural deposits; Industrial wastes
Magnesium (ppm)	2011	24	24–24	NA	NA	32.1 ³	32.1-32.1 ³	Naturally present in the environment
Potassium (ppm)	2014	NA	NA	1.63	1.63–1.63	6.83 ³	6.83–6.83 ³	Naturally present in the environment
Trichloroacetic Acid (ppb)	2015	1.9	1.4–1.9	NA	NA	2.4	1–2.4	By-product of drinking water disinfection

¹Sampled in 2011.

²Sampled in 2014.

³Sampled in 2015.

⁴The MCL for beta particles is 4 mrem/year. U.S. EPA considers 50 pCi/L to be the level of concern for beta particles.

⁵ Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their livers, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

⁶Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.

⁷ Sampled in 2013.

⁸ Sulfate was detected at a level exceeding the established state secondary MCL (SMCL), which was set to protect against unpleasant aesthetic effects such as color, taste, odor, and staining of plumbing fixtures (for example: tubs, sinks, or clothing during laundering). There are no adverse health effects expected with this exceedance.

⁹ Elevated levels of total dissolved solids can result in your water having a bitter or salty taste; creating encrustations, films, or precipitates on fixtures; corrosion of fixtures, and reduced efficiency of water filters and equipment.

¹⁰ Sampled in 2012.

¹¹ Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of monitoring unregulated contaminants is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Definitions

AL (Action Level): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

LRAA (Locational Running Annual Average): The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters. Amount Detected values for Stage 2 TTHMs and HAAs are reported as LRAAs.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.